Traditional: 09-01

Themed: 06-01

Ohm's law and parallel and series resistors

Simplest possible circuit

- Voltage source shorted with a wire
- Current: Flow of positive charge (opposite of what's really flowing (electrons))

When we say charge flows from one point to another, we really mean the anti-flow of electrons, don't let this confuse you! (keep in the back of your mind)

More realistic circuit

- Voltage source pushes electrons through resistance
- Bulb is a resistor you'll use for six days.
- Understand charge flows through bulb going in the bottom and out the side

Without resistance, electrons flow too fast and wire heats up a "short circuit" (previous picture of "simplest circuit")

Filament

- Thin wire in bulb is called the filament
- Wire bulbs are incandescent, meaning they are so hot they glow – most energy is wasted in heat

- Thick filaments are bright (lots of room for many electrons)
- •Thin filaments are dim (narrow, few electrons can flow)

Schematic

- Rather than drawing realistic-looking bulbs and batteries, we use symbols
- Batteries, or voltage sources have a wide positive and a narrow negative
- Resistors have a sawtooth symbol, sometimes put a circle around resistor symbol to symbolize a bulb

What Resistors & batteries do

- Resistors resist flow of charge
- Resistance (R) is measured in ohms (Ω)
- More ohms = more resistance to flow of charge
- Battery "push" voltage (V) measured in volts (V)
- Current (i) measure in amps (A)

- •1 amp = 1 coulomb of charge flowing by any particular point in a wire each second
- •In calculations, Copper wire is usually assumed to have no resistance

Resistors in series – shopping analogy

- Imagine you're doing holiday shopping
- First: Wait in check out line
- Second: Wait in gift box line
- Do two consecutive lines speed flow of shoppers?
- Two consecutive resistors are in "series"

- Resistors in series have more resistance
- We'll learn the math for series and parallel resistors later

What is current?

- Conventional Current is the flow of positive charge
- Electrons flow the opposite way
- Measure in Amps, short for amperes
- Symbol for current is I
- I = Q/t

- •What direction does current flow?
- •What direction do electrons flow?

What is voltage?

- Voltage is the push of charge toward lower voltage
- Think of +/- as elevation, charge goes downhill
- AKA: emf (electromotive force)
- Schematic shows wide end as +, narrow as -
- Voltage drops across resistance ONLY
- In calculations, we assume wire has zero resistance

- •Which has higher voltage, left of R1 or right of R1?
- •Which has higher voltage, left of R2 or right of R2?

Ohm's law

 The relationship between voltage, current and resistance is called Ohm's law and is the cornerstone of current electricity:

 ΔV = iR (voltage drop = current flow x resistance to current flow)

Example: how much current flows when a 12 volt battery is wired to a 4 ohm resistor? (draw a schematic & solve)

(3A)